Code-level modeling in XSPICE

F. L. Cox III, W. B. Kuhn, J. P. Murray and S. D. Tynor

From the
Proceedings of the IEEE International Symposium on
Circuits and Systems, 1992 (ISCAS '92),
Volume 2 , pp. 871-874,
10-13 May 1992.

CODE-LEVEL MODELING IN XSPICE

Fred L. Cox ITI, William B. Kuhn, Jeffrey P. Murray, and Stephen D. Tynor

Computer Science and Information Technology Laboratory
Georgia Tech Research Institute
Georgia Institute of Technology, Atlanta, GA 30332

ABSTRACT

This paper describes code-level modeling in XSPICE, an extended
version of the SPICE3 simulator from the University of California
at Berkeley. XSPICE extends SPICE3’s capabilities to allow
efficient simulation of mixed-signal (analog/digital) circuits and
systems. XSPICE’s code-level modeling approach allows new
models to be easily added to the SPICE3 core, providing a practical
alternative to traditional macro-modeling techniques. Addition of
event-driven simulation extends SPICE3 to include 12-state digital
modeling. User-defined data types allow simulation of designs such
as sampled-data filters. A library of over 40 predefined code models
has been developed, covering analog, digital, and hybrid devices and
functions. The complete XSPICE simulator has been integrated with
the Mentor Graphics MSPICE™ CAE environment, and provides a
general interprocess communications interface for connection to other
CAE system software.

INTRODUCTION

The ability to simulate analog and mixed-signal circuits from the
discrete and IC levels through board and system levels can prove
valuable in many engineering problems. Examples include top-down
design of complex electronic systems, and determining normal,
faulted, and tolerance behavior of existing circuits. Unfortunately,
traditional analog simulators such as SPICE [1] are targeted
primarily at low-level IC design and provide little support for board-
level and system-level domains.

The SPICE program’s set of built-in device models is limited to
discrete components (resistors, diodes, transistors, etc.) and to simple
linear and polynomial controlled sources [1,2]. To allow SPICE to
simulate board-level circuits, macro-modeling approaches have been
developed in which discrete devices and controlled sources are
combined to create more efficient models of ICs such as operational
amplifiers [3,4,5]. Some simulators now provide higher level
primitives such as limiters, multipliers, and user-defined equations
[6] to better support the macro-modeling approach, and a few allow
users to extend the simulator’s set of primitives by coding models in
a general-purpose programming language and linking them with the
simulator core [4,7). This "code modeling” approach has the
potential to allow users to describe arbitrarily complex functions and
behavior, freeing them from a restricted set of devices or functions,
and from development time and execution time inefficiencies inherent
in the traditional macro-modeling approach.

Nevertheless, the utility of the code modeling approach has not been
widely recognized. We believe this is due largely to the limited
provisions for code modeling in available simulators and to a lack of
programming support. Our work has been aimed at making code
modeling a viable alternative to traditional macro-modeling
technology by providing usable code modeling tools in a modern
SPICE-based simulation environment. This code-level modeling
support extends SPICE3 to the board-level and system-level domains.

OVERVIEW

This paper describes the modeling support and associated components
of XSPICE, a new board and system-level simulation tool developed
at the Georgia Tech Research Institute. XSPICE is built around the
SPICE3 program from the University of California at Berkeley [1],
inheriting the major features of SPICE simulation while extending
the program to work in new domains through the following new
capabilities.

o Support for adding “code models" written in the C
programming language.
Code model development and linking tools.
Extensions to the SPICE circuit description syntax.
Embedded event-driven simulation.
Full 12-state digital modeling.
Support for simulating with arbitrary, user-defined, node types.
An extensive library of analog and digital functional-level code
models.
o Enhancements to SPICE algorithms for board and system-level

simulation.
o An interprocess communication interface for connection to CAE
system software.

o0 oo o0

A top-level diagram of XSPICE is shown in Figure 1. A Code
Model Toolkit assists the user in writing, compiling, and linking new
models with the simulator. This toolkit works with additions and
modifications made to the SPICE3 core to tell the simulator how to
parse the extended circuit description syntax and how to call the C
code that defines the model’s behavior. The toolkit also provides
support for introducing new event-driven data types (user-defined
node types) and for linking any number of code models and user-
defined node types with the core to produce new simulator
executables. Preprocessing and compile times for a typical code
model or user-defined node type are approximately 30 seconds, and
a new simulator can be linked in as little as 60 seconds (using an HP
Apollo 9000 Series 400 workstation).

0-7803-0593-0/92 $3.00 1992 IEEE

Code Model User Defined XSPICE Core
Library Code Models|
Parser Event- Generic
Extensions| | Priven Device
Algorithm Routines
i
XSPICE
Code Model SPICE3
Toolkit Core
e
Interprocess
< T TS < 1 = Nutmeg Commun-
Node Type User Defined ications
Library Node Types
Command Line To CAE
and X-Window System
Interface Software

Figure 1. XSPICE Top-Level Diagram.
THE CODE MODEL TOOLKIT

The Code Model Toolkit shown in Figure 1 assists users in adding
new models and node types to the simulator core, while insulating
them from the underlying algorithms and data structures of SPICE3
and XSPICE. Creating new models and adding them to the
simulator involves six steps, including creating directories for the
models and for the simulator executable, defining the models in
Interface Specification and C Function files, and building the models
and simulator with the UNIX™ ’'make’ utility. These steps are
easily learned and require only a few minutes to perform once the C
code for the model has been developed. Creating a new, user-
defined, node type follows similar steps and can be accomplished in
a similar period of time.

The Interface Specification File

A template for the Interface Specification file is created automatically
when the user creates a model directory. The user edits this file to
define the model’s inputs, outputs, and parameters. This capability
allows a high degree of flexibility to the user in describing various
aspects of models. An example Interface Specification file is shown

in Figure 2.

NAME_TABLE:
C_Function_Name: cm_gain
Spice_Model Name: gain

Description: “A simple gain block"
PORT_TABLE:
Port_Name:

Description:

in
"input”

out
"sutput®
Direction: out
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

in
v v
(v,vd, i,1id]

no

[v,vd,i,id,vnam]
no

no no

PARAMETER_TABLE:

Parameter_Name: in_offset gain out_offset
Description: vinput offset" rgain" "output offset”
Data_Type: real real real
Default_Value: 0.0 1.0 0.0

Linits: - - -

Vector: no no no
Vector_Bounds: - - -

Null_Allowed: yes yes yes

Figure 2. Example Interface Specification.

872

Since the file is in a simple tabular text format, it also serves as
documentation on the model’s use.

The C Function File

A template file for the C function is also automatically created when
the model directory is created. The user edits this file to describe
the functional behavior of the model. The Code Model Toolkit
provides the user with a number of macros and functions to simplify
the process of accessing information needed by the model. Examples
of these are listed below with brief explanations. This is by no
means an exhaustive list but represents the nature of support
available to modelers.

INPUT()
OUTPUT()
PARAM()
ANALYSIS
TIME

Accesses the value of the named input.

Used to assign computed value to the named output.
Accesses the value of the named model parameter.
Provides type of analysis (DC, AC, TRANSIENT).
Accesses the current timepoint value.
em_analog_alloc() Create storage to hold data between
calls.

Integrate the specified quantity.
Queue an event time at which to call
the model.

cm_analog_integrate()
cm_event_queue()

The macros insulate the user from detailed data structure definitions
used to pass input, output, and parameter data to the function and
allow this data to be referenced in the C function by the names
supplied in the Interface Specification. In addition, they allow
modifications to be made to the parameter passing mechanism in
future versions of the simulator without invalidating existing models.
An example C function for a simple, gain-block model is shown in
Figure 3.

void cm_gain (ARGS)
{
1f ((ANALYSIS == DC) 11 (ANALYSIS == TRANSIENT)) {
OUTPUT (out) = PARAM(out_offset) + PARAM (gain) *
(INPUT (in) + PARAM(in_offset));
PARTIAL (out,in) = PARAM(gain);
}
else {
AC_GAIN(out,ln).real = PARAM (gain};
AC_GAIN(out,in).imag = 0.0;

Figure 3. Example C Function
CIRCUIT DESCRIPTION SYNTAX EXTENSIONS
XSPICE provides much of its flexibility and power through its

extensions to the SPICE circuit description syntax. These extensions
include:

=]

Support for any number of inputs and outputs (ports) on a
model.

Scalar and vector ports.

Ground referenced and differential ports.

Bidirectional ports for modeling I-V relationships.

12 pre-defined port types (voltage, current, conductance, 12-
state digital logic, etc.).

Port-type overrides to allow a single model to work with
voltages, currents, etc.

User-definable port types.

Logic inversion support for event-driven ports.

o o O 0

o Use of the *null” keyword to indicate a port is unused.

o Parameters of type real, integer, complex, string, or Boolean.
o Scalar and vector parameters.

o Parameter defaults and constraint checking.

References to code models in a SPICE deck follow the general form
used by SPICE for semiconductors. An instance name for a code
model must begin with the letter "a’ to distinguish it from other
SPICE devices. The instance name is followed by a list of
connections and then by a user-chosen model name referencing a
.model card. The name of the code model and the model parameters
are supplied on the .model card as in standard SPICE.

This syntax is automatically parsed by the XSPICE simulator based
on the definitions of ports, port types, and parameters supplied in
each code model’s Interface Specification. Special characters such
as[] < > % and ~ are used to delimit vectors, complex numbers,
port-type overrides, and logic inversion in connection lists and
parameter lists. The following examples illustrate the appearance of
the XSPICE circuit description syntax for a zener diode code model,
and for a Nand gate code model with four inputs, two of which are
inverted:

azener 12 In751a

.model 1n751a zener (v_breakdown=35.1 i_breakdown=20mA
+ r_breakdown=38.0 i_reverse=400nA i_sat=2.37e-16

+ n_forward=1.0)

anand [addr_1 addr 2 ~addr_3 ~addr 4] sell nand_gate
.model nand_gate d_nand (rise_delay=1.5ns fall_delay=0.8ns)

THE CODE MODEL LIBRARY

A library of over 40 predefined code models has been developed for
XSPICE. These are grouped into analog, digital, and hybrid models,
depending on the types of data with which they operate.

The predefined analog code models operate with the standard analog
data (voltages and currents) of SPICE. Examples of models in this
category include Piecewise-Linear Controlled Sources, Zener Diodes,
S-Domain Transfer Functions, Magnetic Cores, and Controlled
Oscillators.

The predefined digital code models manipulate 12-state digital data,
and are simulated by the embedded, event-driven, simulator
algorithm. Examples of digital models include Gates, Flip-Flops,
Digital Sources, State Machines, and RAMs.

The predefined hybrid code models operate with SPICE voltages and
currents and with the event-driven simulator, providing a link
between analog and event-driven algorithms during simulation.

EVENT-DRIVEN SIMULATION ALGORITHM

Modern circuits and systems often contain both analog and digital
compenents, Traditional analog simulation methods such as those
used in SPICE are generally inefficient for simulating such mixed-
signal designs. Simulator developers are therefore beginning to
integrate analog simulation with event-driven simulation.

Event-driven simulation in XSPICE is implemented for DC and
Transient analysis. Event data and event times are processed
independently of, but coordinated with SPICE3’s iterations and

873

timestepping. The conversion between event-driven data and SPICE
analog voltages and currents is handled by hybrid code models that
work in both domains. Hybrid code models coordinate event timing
with analog timesteps through calls to functions in the XSPICE C
function support library. These calls set breakpoints in the analog
simulation timestepping and queue events in the event-driven
simulation. The underlying XSPICE code handles fixup of output
states and event queues whenever the analog algorithm rejects a
timepoint and decreases the time delta to address numerical
integration local truncation error limits or convergence problems.

USER-DEFINED NODE TYPES

The event-driven algorithm used in XSPICE was implemented
independently of the data structure representation used for digital
modeling to allow the same algorithm to be used with arbitrary user-
definable data structures. Code models receive generic pointers to
these data structures and cast the pointers to the desired types.
Hence, the details of the data do not need to be known by the event-
driven algorithm. To add a new type for event-driven simulation,
the user creates a set of functions that perform all the primitive
operations required by the event-driven algorithm, such as structure
creation, initialization, copying, and comparison.

Creation of functions for a new data type is relatively easy. For
example, creation of the full set of functions for the 12-state digital
data type required approximately 3 hours of design and coding.
Creation of functions for simple real and integer data types required
only about 30 minutes each.

PARTIAL DERIVATIVES

One of the problems with adding analog models to SPICE-type
simulators at the code level is the need for partial derivatives of
outputs with respect to inputs. Partial derivatives are required by the
simulator to solve non-linear, simultaneous equations through
Newton-Raphson iteration'.

The XSPICE user has the option of coding partial derivatives
directly, or of requesting XSPICE to automatically compute them
through a call to function cm_analog_auto_partial(. In the latter
case, XSPICE will call the model N additional times, where N is the
number of analog inputs. At each additional call, a single input is
varied by a small amount, and the partial of each output with respect
to that input is approximated by divided differences. The amount by
which the input is varied is equal to the convergence tolerance used
by the analog simulation algorithm.

SIMULATION EXAMPLE

An example illustrating the use of XSPICE in top-down, system-level
design is shown in Figure 4. The system is a simple MIDI (Musical
Instrument Digital Interface) synthesizer. ~ Simulation of the
synthesizer involves three different types of data. Digital data is
used on the left for input of MIDI note numbers and note on/off
control and for simulating a numerically controlled oscillator and
frequency divider. Real-valued data is used in the center to simulate
sampled-data filters used in converting the rectangular waveform
from the digital divider into the desired waveshape. The output of
the sampled-data filter is then converted to normal SPICE voltage
and current data for low-pass filtering at the circuit level. Plots of
the frequency divider’s output, note on/off bit, filter output, and
opamp output are shown in Figure 5.

0.5 UF
MIDI Synthesizer
Cik 1K
2K
Ml D o
ot Dm0 e, |Lof Y Busimeettl 30 A
(7 Bits) Oscillator Dividar P -
Node Node
Note o Bridge Bridge
on/Oft
(1 Bit)
Op Amp
Sampled Data Filter 50

300K Limiter

Gain = 300K
Limits = + 12

D- 12-State Digital Data
R - Real-Valued Data

A- Analog Data {voltage/
current

Figure 4. System-Level Simulation Example.

The development of this simulation required approximately one-day’s
work, including developing 5 new code models. Simulation run time
was under 1 minute on an HP Apoilo 9000 Series 400.

Frequency Divider Outpuf
" i nonnAnARE L NERNRAL
ST TR
BEad aaneat LRI

0.4 0.2

S time

Sampled-Data Filter Output

U p o i B
SpUTTT e v

S tim

Opamp LPF Output

I Y
FU VY VT Vv

0.0

g
§ time

Figure 5. Simulation Example Output Waveforms.

APPLICATIONS

The XSPICE simulator is currently being used at Georgia Tech and
additional sites to analyze board-level, avionics circuits. Efficient
analysis of such circuits is made possible by XSPICE’s code-level
modeling and embedded event-driven simulation. These features
allow normal and faulted behavior of the circuits to be analyzed and
make transient analysis, Monte-Carlo tolerance simulations practical.
In another application, the XSPICE simulator is being used to model
the biological processes found in wastewater treatment plants. Code
models of reactors, separators, and valves provide the building
blocks for simulating, evaluating, and optimizing design alternatives.

We anticipate that XSPICE will find additional applications in
engineering education and in design at the IC, circuit board, and
system levels. The ability to describe arbitrarily complex behavior
in a widely used programming language makes new modeling
techniques accessible to the general SPICE user community.

ACKNOWLEDGEMENTS

The XSPICE simulator is based on the SPICE3 program developed
by the Electronic Research Laboratory, Department of Electrical
Engineering and Computer Sciences, University of California at
Berkeley. The design and development of XSPICE was performed
as a part of projects funded by the U.S. Air Force (ASD and WR-
ALC). Additional thanks are due Harry W. Li and Stefan P. Roth
for their many contributions to the success of the project.

REFERENCES

[1] Quarles, Thomas L., "SPICE3 Version 3C1 User’s Guide,"
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, California, April 1989.

[2] Vladimirescu, A., K. Zhang, A. R. Newton, D. O.
Pederson, A. Sangiovanni-Vincentelli, “SPICE Version 2G
User’s Guide," Department of Flectrical Engineering and
Computer Sciences, University of California, Berkeley,
California, August 1981.

[3] Boyle,G.R,B.M. Cohn, D. O. Pederson, “Macromodeling
of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid State Circuits, Vol. SC-9, No. 6, December 1974.

[41 Epler,B.,"SPICE2 Application Notes for Dependent Sources,"
IEEE Circuits and Devices Magazine, September 1987.

[5] Sitkowski, M., "The Macro-Modeling of Logic Functions for
the SPICE simulator,"” IEEE Circuits and Devices Magazine,
September 1990.

[6] Hageman, S., "Behavioral Modeling and PSpice Simulate
SMPS Control Loops,” PCIM Magazine, April/May 1990.

{71 Bowers,J.C.,R.S. Vogelsong, "Computer Aided Design for
Power Electronics,” IEEE Applied Power Electronics
Conference and Exposition, New Orleans, LA, 1986.

(8] "Saber Cuts SPICE Out of Analog Simulation," Electronics,
pp. 80-82, October 30, 1986.

Note 1. The Saber™ simulator from Analogy Inc. [8] eliminates the need for
explicit coding of partial derivatives but requires the selection of sample points
for piecewise linearization - a technique which can be difficult for functions
with more than a single input.

Note 2. MSPICE is a trademark of Mentor Graphics Corporation. UNIX is
a trademark of AT&T. Saberis a trademark of Analogy Inc.

874

